Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35920817

RESUMO

Biogeographical studies have traditionally focused on readily visible organisms, but recent technological advances are enabling analyses of the large-scale distribution of microscopic organisms, whose biogeographical patterns have long been debated. Here we assessed the global structure of plankton geography and its relation to the biological, chemical, and physical context of the ocean (the 'seascape') by analyzing metagenomes of plankton communities sampled across oceans during the Tara Oceans expedition, in light of environmental data and ocean current transport. Using a consistent approach across organismal sizes that provides unprecedented resolution to measure changes in genomic composition between communities, we report a pan-ocean, size-dependent plankton biogeography overlying regional heterogeneity. We found robust evidence for a basin-scale impact of transport by ocean currents on plankton biogeography, and on a characteristic timescale of community dynamics going beyond simple seasonality or life history transitions of plankton.


Oceans are brimming with life invisible to our eyes, a myriad of species of bacteria, viruses and other microscopic organisms essential for the health of the planet. These 'marine plankton' are unable to swim against currents and should therefore be constantly on the move, yet previous studies have suggested that distinct species of plankton may in fact inhabit different oceanic regions. However, proving this theory has been challenging; collecting plankton is logistically difficult, and it is often impossible to distinguish between species simply by examining them under a microscope. However, within the last decade, a research schooner called Tara has travelled the globe to gather thousands of plankton samples. At the same time, advances in genomics have made it possible to identify species based only on fragments of their DNA sequence. To understand the hidden geography of plankton communities in Earth's oceans, Richter et al. pored over DNA from the Tara Oceans expedition. This revealed that, despite being unable to resist the flow of water, various planktonic species which live close to the surface manage to occupy distinct, stable provinces shaped by currents. Different sizes of plankton are distributed in different sized provinces, with the smallest organisms tending to inhabit the smallest areas. Comparing DNA similarities and speeds of currents at the ocean surface revealed how these might stretch and mix plankton communities. Plankton play a critical role in the health of the ocean and the chemical cycles of planet Earth. These results could allow deeper investigation by marine modellers, ecologists, and evolutionary biologists. Meanwhile, work is already underway to investigate how climate change might impact this hidden geography.


Assuntos
Ecossistema , Plâncton , Genômica , Geografia , Oceanos e Mares , Plâncton/genética
2.
J R Soc Interface ; 18(179): 20210270, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34157893

RESUMO

Crowding has a major impact on the dynamics of many material and biological systems, inducing effects as diverse as glassy dynamics and swarming. While this issue has been deeply investigated for a variety of living organisms, more research remains to be done on the effect of crowding on the behaviour of copepods, the most abundant metazoans on Earth. To this aim, we experimentally investigate the swimming behaviour, used as a dynamic proxy of animal adaptations, of males and females of the calanoid copepod Centropages typicus at different densities of individuals (10, 50 and 100 ind. l-1) by performing three-dimensional single-organism tracking. We find that the C. typicus motion is surprisingly unaffected by crowding over the investigated density range. Indeed, the mean square displacements as a function of time always show a crossover from ballistic to Fickian regime, with poor variations of the diffusion constant on increasing the density. Close to the crossover, the displacement distributions display exponential tails with a nearly density-independent decay length. The trajectory fractal dimension, D3D ≅ 1.5, and the recently proposed 'ecological temperature' also remain stable on increasing the individual density. This suggests that, at least over the range of animal densities used, crowding does not impact on the characteristics of C. typicus swimming motion, and that a homeostatic mechanism preserves the stability of its swimming performance.


Assuntos
Copépodes , Animais , Difusão , Feminino , Masculino , Natação , Zooplâncton
3.
Open Biol ; 11(4): 200395, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33823659

RESUMO

Diatoms are one of the major and most diverse groups of phytoplankton, with chimeric genomes harbouring a combination of genes of bacterial, animal and plant origin. They have developed sophisticated mechanisms to face environmental variations. In marine environments, nutrients concentration shows significant temporal and spatial variability, influencing phytoplankton growth. Among nutrients, nitrogen, present at micromolar levels, is often a limiting resource. Here, we report a comprehensive characterization of the Nitrate Transporter 1/Peptide Transporter Family (NPF) in diatoms, diNPFs. NPFs are well characterized in many organisms where they recognize a broad range of substrates, ranging from short-chained di- and tri-peptides in bacteria, fungi and mammals to a wide variety of molecules including nitrate in higher plants. Scarce information is available for diNPFs. We integrated-omics, phylogenetic, structural and expression analyses, to infer information on their role in diatoms. diNPF genes diverged to produce two distinct clades with strong sequence and structural homology with either bacterial or plant NPFs, with different predicted sub-cellular localization, suggesting that the divergence resulted in functional diversification. Moreover, transcription analysis of diNPF genes under different laboratory and environmental growth conditions suggests that diNPF diversification led to genetic adaptations that might contribute to diatoms ability to flourish in diverse environmental conditions.


Assuntos
Evolução Biológica , Diatomáceas/fisiologia , Genômica , Transportadores de Nitrato/química , Transportadores de Nitrato/fisiologia , Conformação Proteica , Sítios de Ligação , Biologia Computacional/métodos , Bases de Dados Genéticas , Diatomáceas/classificação , Perfilação da Expressão Gênica , Genoma , Genômica/métodos , Modelos Moleculares , Filogenia , Filogeografia , Ligação Proteica , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
4.
Nat Ecol Evol ; 5(2): 204-218, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432133

RESUMO

The right timing of animal physiology and behaviour ensures the stability of populations and ecosystems. To predict anthropogenic impacts on these timings, more insight is needed into the interplay between environment and molecular timing mechanisms. This is particularly true in marine environments. Using high-resolution, long-term daylight measurements from a habitat of the marine annelid Platynereis dumerilii, we found that temporal changes in ultraviolet A (UVA)/deep violet intensities, more than longer wavelengths, can provide annual time information, which differs from annual changes in the photoperiod. We developed experimental set-ups that resemble natural daylight illumination conditions, and automated, quantifiable behavioural tracking. Experimental reduction of UVA/deep violet light (approximately 370-430 nm) under a long photoperiod (16 h light and 8 h dark) significantly decreased locomotor activities, comparable to the decrease caused by a short photoperiod (8 h light and 16 h dark). In contrast, altering UVA/deep violet light intensities did not cause differences in locomotor levels under a short photoperiod. This modulation of locomotion by UVA/deep violet light under a long photoperiod requires c-opsin1, a UVA/deep violet sensor employing Gi signalling. C-opsin1 also regulates the levels of rate-limiting enzymes for monogenic amine synthesis and of several neurohormones, including pigment-dispersing factor, vasotocin (vasopressin/oxytocin) and neuropeptide Y. Our analyses indicate a complex inteplay between UVA/deep violet light intensities and photoperiod as indicators of annual time.


Assuntos
Opsinas , Poliquetos , Animais , Ecossistema , Opsinas/genética , Fotoperíodo , Estações do Ano
5.
Mar Environ Res ; 158: 104953, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32217299

RESUMO

Pollutants alter marine systems, interfering with provisioning of ecosystem services; understanding their interaction with ecological communities is therefore critical to inform environmental management. Here we propose a joint compositional- and interaction-based analysis for ecological status assessment and apply it on the benthic communities of the Bagnoli Bay. We found that contamination differentially affects the communities' composition in the bay, with prokaryotes influenced only by depth, and benthos not following the environmental gradient at all. This result is confirmed by analyses of the community structure, whose network structure suggest fast carbon flow and cycling, especially promoted by nematodes and polychaetes; the benthic prey/predator biomass ratio, adjusted for competition, successfully synthesise the status of predator taxa. We found demersal fish communities to separate into a deep, pelagic-like community, and two shallow communities where a shift from exclusive predators to omnivores occurs, moving from the most polluted to the least polluted sampling units. Finally, our study indicate that indices based on interspecific interactions are better indicators of environmental gradients than those defined based on species composition exclusively.


Assuntos
Ecossistema , Poluentes Ambientais , Animais , Baías , Monitoramento Ambiental , Peixes
6.
Harmful Algae ; 89: 101654, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31672223

RESUMO

Dinoflagellate species of Dinophysis, in particular D. acuminata and D. acuta, produce lipophilic toxins that pose a threat to human health when concentrated in shellfish and jeopardize shellfish exploitations in western Europe. In northwestern Iberia, D. acuminata has a long growing season, from spring to early autumn, and populations develop as soon as shallow stratification forms when the upwelling season begins. In contrast, D. acuta blooms in late summer, when the depth of the pycnocline is maximal and upwelling pulses are moderate. In situ observations on the hydrodynamic regimes during the two windows of opportunity for Dinophysis species led us to hypothesize that D. acuta should be more sensitive to turbulence than D. acuminata. To test this hypothesis, we studied the response of D. acuminata and D. acuta to three realistic turbulence levels low (LT), ε ≈ 10-6 m2 s-3; medium (MT), ε ≈ 10-5 m2 s-3 and high (HT), ε ≈ 10-4 m2 s-3generated by Turbogen, a highly reproducible, computer-controlled system. Cells of both species exposed to LT and MT grew at rates similar to the controls. Marked differences were found in the response to HT: D. acuminata grew slowly after an initial lag phase, whereas D. acuta cell numbers declined. Results from this study support the hypothesis that turbulence may play a role in shaping the spatio-temporal distribution of individual species of Dinophysis. We also hypothesize that, in addition to cell disturbance affecting division, sustained high shear generated by microturbulence may cause a decline in Dinophysis numbers due to decreased densities of ciliate prey.


Assuntos
Cilióforos , Dinoflagellida , Europa (Continente) , Estações do Ano , Frutos do Mar
7.
Ecol Evol ; 9(20): 11631-11646, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31695874

RESUMO

Species are characterized by physiological and behavioral plasticity, which is part of their response to environmental shifts. Nonetheless, the collective response of ecological communities to environmental shifts cannot be predicted from the simple sum of individual species responses, since co-existing species are deeply entangled in interaction networks, such as food webs. For these reasons, the relation between environmental forcing and the structure of food webs is an open problem in ecology. To this respect, one of the main problems in community ecology is defining the role each species plays in shaping community structure, such as by promoting the subdivision of food webs in modules-that is, aggregates composed of species that more frequently interact-which are reported as community stabilizers. In this study, we investigated the relationship between species roles and network modularity under environmental shifts in a highly resolved food web, that is, a "weighted" ecological network reproducing carbon flows among marine planktonic species. Measuring network properties and estimating weighted modularity, we show that species have distinct roles, which differentially affect modularity and mediate structural modifications, such as modules reconfiguration, induced by environmental shifts. Specifically, short-term environmental changes impact the abundance of planktonic primary producers; this affects their consumers' behavior and cascades into the overall rearrangement of trophic links. Food web re-adjustments are both direct, through the rewiring of trophic-interaction networks, and indirect, with the reconfiguration of trophic cascades. Through such "systemic behavior," that is, the way the food web acts as a whole, defined by the interactions among its parts, the planktonic food web undergoes a substantial rewiring while keeping almost the same global flow to upper trophic levels, and energetic hierarchy is maintained despite environmental shifts. This behavior suggests the potentially high resilience of plankton networks, such as food webs, to dramatic environmental changes, such as those provoked by global change.

8.
Mol Biol Evol ; 36(11): 2522-2535, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31259367

RESUMO

Diatoms (Bacillariophyta), one of the most abundant and diverse groups of marine phytoplankton, respond rapidly to the supply of new nutrients, often out-competing other phytoplankton. Herein, we integrated analyses of the evolution, distribution, and expression modulation of two gene families involved in diatom nitrogen uptake (DiAMT1 and DiNRT2), in order to infer the main drivers of divergence in a key functional trait of phytoplankton. Our results suggest that major steps in the evolution of the two gene families reflected key events triggering diatom radiation and diversification. Their expression is modulated in the contemporary ocean by seawater temperature, nitrate, and iron concentrations. Moreover, the differences in diversity and expression of these gene families throughout the water column hint at a possible link with bacterial activity. This study represents a proof-of-concept of how a holistic approach may shed light on the functional biology of organisms in their natural environment.

9.
Eur Phys J E Soft Matter ; 41(6): 79, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29934856

RESUMO

Suspensions of small planktonic copepods represent a special category in the realm of active matter, as their size falls within the range of colloids, while their motion is so complex that it cannot be rationalized according to basic models of self-propelled particles. Indeed, the wide range of individual variability and swimming patterns resemble the behaviour of much larger animals. By analysing hundreds of three-dimensional trajectories of the planktonic copepod Clausocalanus furcatus, we investigate the possibility of detecting how the motion of this species is affected by different external conditions, such as the presence of food and the effect of gravity. While this goal is hardly achievable by direct inspection of single organism trajectories, we show that this is possible by focussing on simple average metrics commonly used to characterize colloidal suspensions, such as the mean square displacement and the dynamic correlation functions. We find that the presence of food leads to the onset of a clear localization that separates a short-time ballistic from a long-time diffusive regime. Such a benchmark reflects the tendency of C. furcatus to remain temporally feeding in a limited space and disappears when food is absent. Localization is clearly evident in the horizontal plane, but is negligible in the vertical direction, due to the effect of gravity. Our results suggest that simple average descriptors may provide concise and useful information on the swimming properties of planktonic copepods, even though single organism behaviour is strongly heterogeneous.


Assuntos
Copépodes/fisiologia , Ecossistema , Natação , Zooplâncton/fisiologia , Animais , Fenômenos Biomecânicos , Coloides/química , Difusão , Movimento (Física)
10.
Sci Rep ; 7(1): 3826, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630429

RESUMO

Diatoms are a fundamental microalgal phylum that thrives in turbulent environments. Despite several experimental and numerical studies, if and how diatoms may profit from turbulence is still an open question. One of the leading arguments is that turbulence favours nutrient uptake. Morphological features, such as the absence of flagella, the presence of a rigid exoskeleton and the micrometre size would support the possible passive but beneficial role of turbulence on diatoms. We demonstrate that in fact diatoms actively respond to turbulence in non-limiting nutrient conditions. TURBOGEN, a prototypic instrument to generate natural levels of microscale turbulence, was used to expose diatoms to the mechanical stimulus. Differential expression analyses, coupled with microscopy inspections, enabled us to study the morphological and transcriptional response of Chaetoceros decipiens to turbulence. Our target species responds to turbulence by activating energy storage pathways like fatty acid biosynthesis and by modifying its cell chain spectrum. Two other ecologically important species were examined and the occurrence of a morphological response was confirmed. These results challenge the view of phytoplankton as unsophisticated passive organisms.


Assuntos
Diatomáceas/crescimento & desenvolvimento , Regulação da Expressão Gênica/fisiologia , Transcriptoma
11.
Sci Rep ; 7(1): 1828, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28500335

RESUMO

Current information on the response of phytoplankton to turbulence is linked to cell size and nutrient availability. Diatoms are considered to be favored by mixing as dissolved nutrients are more easily accessible for non-motile cells. We investigated how diatoms exploit microscale turbulence under nutrient repletion and depletion conditions. Here, we show that the chain-forming diatom Chaetoceros decipiens, continues to take up phosphorus and carbon even when silicon is depleted during turbulence. Our findings indicate that upon silica depletion, during turbulence, chain spectra of C. decipiens remained unchanged. We show here that longer chains are maintained during turbulence upon silica depletion whereas under still conditions, shorter chains are enriched. We interpret this as a sign of good physiological state leading to a delay of culture senescence. Our results show that C. decipiens senses and responds to turbulence both in nutrient repletion and depletion. This response is noteworthy due to the small size of the species. The coupling between turbulence and biological response that we depict here may have significant ecological implications. Considering the predicted increase of storms in Northern latitudes this response might modify community structure and succession. Our results partly corroborate Margalef's mandala and provide additional explanations for that conceptualization.

12.
Curr Opin Plant Biol ; 37: 70-77, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28456112

RESUMO

Marine eukaryotic phytoplankton are major contributors to global primary production. To adapt and thrive in the oceans, phytoplankton relies on a variety of light-regulated responses and light-acclimation capacities probably driven by sophisticated photoregulatory mechanisms. A plethora of photoreceptor-like sequences from marine microalgae have been identified in omics approaches. Initial studies have revealed that some algal photoreceptors are similar to those known in plants. In addition, new variants with different spectral tuning and algal-specific light sensors have also been found, changing current views and perspectives on how photoreceptor structure and function have diversified in phototrophs experiencing different environmental conditions.


Assuntos
Luz , Microalgas/metabolismo , Microalgas/efeitos da radiação , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Mar Genomics ; 32: 1-17, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28283424

RESUMO

Recent progress in applying meta-omics approaches to the study of marine ecosystems potentially allows scientists to study the genetic and functional diversity of plankton at an unprecedented depth and with enhanced precision. However, while a range of persistent technical issues still need to be resolved, a much greater obstacle currently preventing a complete and integrated view of the marine ecosystem is the absence of a clear conceptual framework. Herein, we discuss the knowledge that has thus far been derived from conceptual and statistical modelling of marine plankton ecosystems, and illustrate the potential power of integrated meta-omics approaches in the field. We then propose the use of a semantic framework is necessary to support integrative ecological modelling in the meta-omics era, particularly when having to face the increased interdisciplinarity needed to address global issues related to climate change.


Assuntos
Ecossistema , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Modelos Biológicos , Plâncton/fisiologia , Oceanos e Mares , Plâncton/genética
14.
Rev Sci Instrum ; 87(3): 035119, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27036831

RESUMO

In recent years, there has been a renewed interest in the impact of turbulence on aquatic organisms. In response to this interest, a novel instrument has been constructed, TURBOGEN, that generates turbulence in water volumes up to 13 l. TURBOGEN is fully computer controlled, thus, allowing for a high level of reproducibility and for variations of the intensity and characteristics of turbulence during the experiment. The calibration tests, carried out by particle image velocimetry, showed TURBOGEN to be successful in generating isotropic turbulence at the typical relatively low levels of the marine environment. TURBOGEN and its sizing have been devised with the long-term scope of analyzing in detail the molecular responses of plankton to different mixing regimes, which is of great importance in both environmental and biotechnological processes.


Assuntos
Computadores , Hidrodinâmica , Plâncton , Calibragem , Desenho de Equipamento , Cinética , Água
15.
Sci Rep ; 6: 21806, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26883643

RESUMO

A planktonic food-web model including sixty-three functional nodes (representing auto- mixo- and heterotrophs) was developed to integrate most trophic diversity present in the plankton. The model was implemented in two variants - which we named 'green' and 'blue' - characterized by opposite amounts of phytoplankton biomass and representing, respectively, bloom and non-bloom states of the system. Taxonomically disaggregated food-webs described herein allowed to shed light on how components of the plankton community changed their trophic behavior in the two different conditions, and modified the overall functioning of the plankton food web. The green and blue food-webs showed distinct organizations in terms of trophic roles of the nodes and carbon fluxes between them. Such re-organization stemmed from switches in selective grazing by both metazoan and protozoan consumers. Switches in food-web structure resulted in relatively small differences in the efficiency of material transfer towards higher trophic levels. For instance, from green to blue states, a seven-fold decrease in phytoplankton biomass translated into only a two-fold decrease in potential planktivorous fish biomass. By linking diversity, structure and function in the plankton food-web, we discuss the role of internal mechanisms, relying on species-specific functionalities, in driving the 'adaptive' responses of plankton communities to perturbations.


Assuntos
Cadeia Alimentar , Fitoplâncton , Biomassa , Itália , Mar Mediterrâneo , Modelos Biológicos
16.
Sci Total Environ ; 466-467: 820-40, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23994731

RESUMO

During the 7th FW EU Programme, a large group of research institutions with a strong tradition in marine science designed PERSEUS, a policy-oriented, marine research project aimed at identifying human-derived pressures and their impacts in the Southern European Seas. PERSEUS is about gathering and analyzing the data on our marine ecosystems and developing recommendations to assist policy makers in the implementation of the Marine Strategy Framework Directive (MSFD). In its initial phase, the project focuses on the analysis and evaluation of human pressures in selected coastal areas across the Mediterranean and Black Seas. This paper reports on the results about the chemical pollution pressure in the Gulf of Naples, one of the sites selected for the analysis, and surrounding waters of the Southern Tyrrhenian Sea. Based on a systematic up-to-date literature review, the paper brings together for the first time the available information on the presence, severity and distribution of contaminants on the site. In spite of methodological and sampling heterogeneity among studies, this review compiles the data in a harmonized and effective way, so that the current status, knowledge gaps and research priorities can be established. Thus, the review wishes not only to provide a contribution to the scientific community, but also to help to extract recommendations for mitigating pollution sources and risks in the area of concern. A similar process of analysis may be carried out for other areas and pressures in order to facilitate policy making at the European level.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Exposição Ambiental , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental , Sedimentos Geológicos/análise , Humanos , Itália , Oceanos e Mares , Medição de Risco , Água do Mar/análise , Poluentes Químicos da Água/análise
17.
PLoS One ; 8(6): e67640, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826331

RESUMO

Planktonic copepods display a large repertoire of motion behaviors in a three-dimensional environment. Two-dimensional video observations demonstrated that the small copepod Clausocalanus furcatus, one the most widely distributed calanoids at low to medium latitudes, presented a unique swimming behavior that was continuous and fast and followed notably convoluted trajectories. Furthermore, previous observations indicated that the motion of C. furcatus resembled a random process. We characterized the swimming behavior of this species in three-dimensional space using a video system equipped with telecentric lenses, which allow tracking of zooplankton without the distortion errors inherent in common lenses. Our observations revealed unexpected regularities in the behavior of C. furcatus that appear primarily in the horizontal plane and could not have been identified in previous observations based on lateral views. Our results indicate that the swimming behavior of C. furcatus is based on a limited repertoire of basic kinematic modules but exhibits greater plasticity than previously thought.


Assuntos
Inteligência Artificial , Copépodes/fisiologia , Mecanotransdução Celular/fisiologia , Natação/fisiologia , Animais , Copépodes/classificação , Meio Ambiente , Modelos Biológicos , Gravação em Vídeo
18.
J Exp Bot ; 63(4): 1575-91, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22328904

RESUMO

Light is an essential source of energy for life on Earth and is one of the most important signals that organisms use to obtain information from the surrounding environment, on land and in the oceans. Prominent marine microalgae, such as diatoms, display a suite of sophisticated responses (physiological, biochemical, and behavioural) to optimize their photosynthesis and growth under changing light conditions. However, the molecular mechanisms controlling diatom responses to light are still largely unknown. Recent progress in marine diatom genomics and genetics, combined with well-established (eco) physiological and biophysical approaches, now offers novel opportunities to address these issues. This review provides a description of the molecular components identified in diatom genomes that are involved in light perception and acclimation mechanisms. How the initial functional characterizations of specific light regulators provide the basis to investigate the conservation or diversification of light-mediated processes in diatoms is also discussed. Hypotheses on the role of the identified factors in determining the growth, distribution, and adaptation of diatoms in different marine environments are reported.


Assuntos
Diatomáceas/fisiologia , Luz , Aclimatação , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Células Fotorreceptoras/fisiologia , Fotossíntese , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...